
SMART CONTRACT
AUDIT REPORT
FOR DEFEXA

1

Apr.23

+44 808 2711555 info@hexens.io

⬢ About Hexens / 4

⬢ Audit led by / 5

⬢ Methodology / 6

⬢ Severity structure / 7

⬢ Executive summary / 9

⬢ Scope / 10

⬢ Summary / 11

⬢ Weaknesses / 12

⬡ Anyone can stop the protocol / 12

⬡ Bad actors can drain money from the contract or manipulate it / 14

⬡ Bad actor can frontrun orders matching / 16

⬡ Anyone can upgrade the protocol / 19

⬡ Incorrect if statement / 20

⬡ Incomplete implementation of logic / 22

⬡ Missing limit on fee / 24

⬡ CreateOrder function parameters lack zero value check / 25

⬡ Better working comparison logic / 28

⬡ Function parameter lacks zero address check / 30

⬡ Redundant if statements / 32

CONTENTS

2

+44 808 2711555 info@hexens.io

⬡ Improve code readability / 34

⬡ Function's state mutability / 36

⬡ Redundant return / 37

CONTENTS

3

+44 808 2711555 info@hexens.io

ABOUT HEXENS

Hexens is a cybersecurity company that strives to elevate the
standards of security in Web 3.0, create a safer environment for
users, and ensure mass Web 3.0 adoption.

Hexens has multiple top-notch auditing teams specialized in
different fields of information security, showing extreme
performance in the most challenging and technically complex
tasks, including but not limited to: Infrastructure Audits, Zero
Knowledge Proofs / Novel Cryptography, DeFi and NFTs. Hexens not
only uses widely known methodologies and flows, but focuses on
discovering and introducing new ones on a day-to-day basis.

In 2022, our team announced the closure of a $4.2 million seed
round led by IOSG Ventures, the leading Web 3.0 venture capital.
Other investors include Delta Blockchain Fund, Chapter One, Hash
Capital, ImToken Ventures, Tenzor Capital, and angels from Polygon
and other blockchain projects.

Since Hexens was founded in 2021, it has had an impressive track
record and recognition in the industry: Mudit Gupta - CISO of
Polygon Technology - the biggest EVM Ecosystem, joined the
company advisory board after completing just a single
cooperation iteration. Polygon Technology, 1inch, Lido, Hats
Finance, Quickswap, Layerswap, 4K, RociFi, as well as dozens of
DeFi protocols and bridges, have already become our customers
and taken proactive measures towards protecting their assets.

4

+44 808 2711555 info@hexens.io 55

AUDIT
LED BY

VAHE
KARAPETYAN
Co-founder / CTO | Hexens

Audit Starting Date
24.04.2023

Audit Completion Date
01.05.2023

+44 808 2711555 info@hexens.io

METHODOLOGY

Companies often assign just one engineer to one security assessment
with no specified level. Despite the possible impeccable skills of the
assigned engineer, it carries risks of the human factor that can affect
the product's lifecycle.

COMMON AUDIT PROCESS

Hexens methodology involves 2 teams, including multiple auditors of
different seniority, with at least 5 security engineers. This unique
cross-checking mechanism helps us provide the best quality in the
market.

HEXENS METHODOLOGY

6

+44 808 2711555 info@hexens.io

SEVERITY CHARACTERISTICS

Vulnerabilities can range in severity and impact, and it's important
to understand their level of severity in order to prioritize their
resolution. Here are the different types of severity levels of
vulnerabilities:

CRITICAL
Vulnerabilities with this level of severity can result in significant financial
losses or reputational damage. They often allow an attacker to gain
complete control of a contract, directly steal or freeze funds from the
contract or users, or permanently block the functionality of a protocol.
Examples include infinite mints and governance manipulation.

SEVERITY STRUCTURE
The vulnerability severity is calculated based on two components

● Impact of the vulnerability
● Probability of the vulnerability

7

IMPACT PROBABILITY

Rare Unlikely Likely Very Likely

Low / Info Low / Info Low / Info Medium Medium

Medium Low / Info Medium Medium High

High Medium Medium High Critical

Critical Medium High Critical Critical

+44 808 2711555 info@hexens.io

HIGH
Vulnerabilities with this level of severity can result in some financial losses
or reputational damage. They often allow an attacker to directly steal yield
from the contract or users, or temporarily freeze funds. Examples include
inadequate access control integer overflow/underflow, or logic bugs.

MEDIUM
Vulnerabilities with this level of severity can result in some damage to the
protocol or users, without profit for the attacker. They often allow an attacker
to exploit a contract to cause harm, but the impact may be limited, such as
temporarily blocking the functionality of the protocol. Examples include
uninitialized storage pointers and failure to check external calls.

LOW
Vulnerabilities with this level of severity may not result in financial losses or
significant harm. They may, however, impact the usability or reliability of a
contract. Examples include slippage and front-running, or minor logic bugs.

INFORMATIONAL
Vulnerabilities with this level of severity are regarding gas optimizations and
code style. They often involve issues with documentation, incorrect usage
of EIP standards, best practices for saving gas, or the overall design of a
contract. Examples include not conforming to ERC20, or disagreement
between documentation and code.

It's important to consider all types of vulnerabilities, including
informational ones, when assessing the security of the project. A
comprehensive security audit should consider all types of
vulnerabilities to ensure the highest level of security and
reliability.

8

+44 808 2711555 info@hexens.io 99

EXECUTIVE
SUMMARY

OVERVIEW

This audit covered Defexa’s order protocol.

Our security assessment was a full review of Defexa’s protocol
and its smart contracts. We have thoroughly reviewed each
contract individually and the system as a whole.

During the security assessment process, we uncovered 1 critical
severity vulnerability in the DefexaExchange. It would allow an
attacker to stop the protocol.

We have also identified 4 high severity vulnerabilities, various
minor vulnerabilities, and code optimizations.

Finally, all of our reported issues were fixed or acknowledged by
the development team and consequently validated by us.

We can confidently say that the overall security and code quality
has increased after the completion of our audit.

+44 808 2711555 info@hexens.io

The analyzed resources were sent in an archive with the following
SHA256 hash:
397c94eb91f10c7c5551a2742fd6969dd98c8301664a527e8345711d34
51e8ab

The issues described in the report were fixed in the following
version (SHA256 hash):
84675d0cc3ba467e17cc6e56e193e94055fa9e25f261f63b4887822d7
0e4cc0f

SCOPE

10

+44 808 2711555 info@hexens.io

TOTAL: 14

SUMMARY

HIGH

CRITICAL

MEDIUM

1

4

3

INFORMATIONAL 6

SEVERITY NUMBER OF FINDINGS

SEVERITY STATUS

11

LOW 0

+44 808 2711555 info@hexens.io

DEX-3. ANYONE CAN STOP THE
PROTOCOL

SEVERITY: Critical

PATH: DefexaExchange.sol, Living.sol

REMEDIATION: use OpenZeppelin’s Pausable Library

STATUS: fixed

DESCRIPTION:

The DefexaExchange.sol contract imports

WardedLivingUpgradeable.sol, which, in turn, imports Living.sol.

Living.sol has an external stop() function, a public run() function, and a live

modifier that requires alive to not equal 0. In the DefexaExchange.sol

contract, the alive variable is set to 1 in the initialize() function, and the live

modifier is used for the createOrder and cancelOrder functions. However,

since anyone can call the functions run() and stop(), it means anyone can

set alive equal to 0, causing the protocol to stop, or in case the protocol

should be stopped, anyone can run it.

WEAKNESSES
This section contains the list of discovered weaknesses.

12

+44 808 2711555 info@hexens.io 13

abstract contract Living {

 uint256 alive;

 modifier live {

 require(alive != 0, "Living/not-live");

 _;

 }

 function stop() external {

 alive = 0;

 }

 function run() public {

 alive = 1;

 }

}

+44 808 2711555 info@hexens.io

DEX-13. BAD ACTORS CAN DRAIN
MONEY FROM THE CONTRACT OR
MANIPULATE IT

SEVERITY: High

PATH: Arbitrage.sol

REMEDIATION: implement access control, to prevent
unauthorized actions and ensure the safety of the contract and
its users. Consider using, for example, OpenZeppelin’s
Ownable.sol, or already implemented Warded.sol

STATUS: fixed

DESCRIPTION:

The Arbitrage smart contract is designed to facilitate the execution of

multiple external function calls via its multiCall() function. The multiCall()

and approve() functions in this contract are both marked as external and

have no access modifiers. This presents a potential vulnerability, as a

malicious actor could potentially manipulate the contract through these

functions.

Specifically, the approve() function lacks security checks, which could

enable a bad actor to exploit the contract by giving themselves or others

allowance, and potentially manipulate the multiCall() function to draw

funds from the contract.

14

+44 808 2711555 info@hexens.io 15

contract Arbitrage {

 receive() external payable {}

 function multiCall(

 address[] calldata targets,

 bytes[] calldata data

) external payable {

 require(targets.length == data.length, "target length != data length");

 for (uint i; i < targets.length; i++) {

 (bool success,) = targets[i].call(data[i]);

 require(success, "call failed");

 }

 }

 function approve(address token, address spender, uint256 amount) external {

 IERC20(token).approve(spender, amount);

 }

}

+44 808 2711555 info@hexens.io

DEX-2. BAD ACTOR CAN FRONTRUN
ORDERS MATCHING

SEVERITY: High

PATH: DefexaExchange.sol

REMEDIATION: use a secure random number generator or a
nonce-based approach to generate unique _orderId

STATUS: fixed

DESCRIPTION:

In the function createOrder() the current method of generating a new order

ID is by hashing the sender address, amount, and current

block.timestamp, this implementation is not secure. A malicious actor can

create an order for swapping TokenA to TokenB. Then if it matches in the

same block, they can frontrun and create another order with changed

price, _isQuote, and _orderType fields but with the same _orderId,

potentially causing confusion or manipulation.

16

+44 808 2711555 info@hexens.io 17

function createOrder(

 address _tokenA,

 address _tokenB,

 uint256 _amount,

 uint256 _price,

 bool _isQuote,

 uint8 _orderType

) external payable override live returns (uint256) {

 if (_tokenA == _tokenB) {

 revert TokensMismatch();

 }

 if (_orderType != ORDER_TYPE_GTC) {

 revert OrderTypeNotSupported(_orderType);

 }

 uint256 holdAmount = _amount;

 if (_isQuote) {

 holdAmount = (_amount * _price) / 1e18;

 }

 if (_tokenA == address(0) && msg.value != holdAmount) {

 revert InvalidOrder();

 }

 uint256 newId = uint256(

 keccak256(abi.encode(msg.sender, block.timestamp, _amount))

);

 orders[newId] = Order({

 id: newId,

 createdAt: block.timestamp,

 user: msg.sender,

 tokenA: _tokenA,

 tokenB: _tokenB,

 amount: _amount,

 initialAmount: holdAmount,

 spentAmount: 0,

 price: _price,

 isQuote: _isQuote,

 orderType: _orderType,

 status: ORDER_STATUS_NEW

 });

+44 808 2711555 info@hexens.io 18

 if (_tokenA != address(0)) {

 if (

 !IERC20(_tokenA).transferFrom(

 msg.sender,

 address(this),

 holdAmount

)

) {

 revert TransferFailed();

 }

 }

 emit NewOrder(

 msg.sender,

 newId,

 _amount,

 _price,

 _tokenA,

 _tokenB,

 block.timestamp,

 _isQuote,

 _orderType

);

 return newId;

 }

+44 808 2711555 info@hexens.io

DEX-14. ANYONE CAN UPGRADE THE
PROTOCOL

SEVERITY: High

PATH: DefexaVault.sol

REMEDIATION: add onlyOwner modifier

STATUS: fixed

DESCRIPTION:

The _authorizeUpgrade function is missing an owner check, which means

that anyone can perform a proxy upgrade and potentially steal funds from

the contract.

19

function _authorizeUpgrade(address newImplementation) internal override {}

+44 808 2711555 info@hexens.io

DEX-7. INCORRECT IF STATEMENT

SEVERITY: High

PATH: DefexaExchange.sol

REMEDIATION: remove if (taker.isQuote)

STATUS: fixed

DESCRIPTION:

In the _fill function, there is a check to ensure that taker.price is not

greater than maker.price, but this check only applies if taker.isQuote is set

to true. However, a user can create an order with the taker.isQuote

parameter set to false thus, the if-statement that is designed to protect the

use will be bypassed. As a result, such an order can be matched with other

orders that have a higher price.

20

+44 808 2711555 info@hexens.io 21

 function _fill(

 Order storage maker,

 Order storage taker

) internal {

 if (taker.isQuote) {

 if (1e36 / taker.price > maker.price) {

 revert PriceMismatch(maker.price, taker.price);

 }

 }

 (uint256 makerAmount, uint256 makerQuote, uint256 takerAmount, uint256 takerQuote) =

 _getAmountForPrice(maker, taker);

 if (makerQuote > takerAmount) {

 makerQuote = takerAmount;

 }

 if (takerQuote > makerAmount) {

 takerQuote = makerAmount;

 }

 uint256 takerToMaker = makerQuote;

 uint256 makerToTaker = takerQuote;

 if (maker.isQuote) {

 maker.amount -= takerToMaker;

 } else {

 maker.amount -= makerToTaker;

 }

 maker.spentAmount += makerToTaker;

 if (taker.isQuote) {

 taker.amount -= makerToTaker;

 } else {

 taker.amount -= takerToMaker;

 }

 taker.spentAmount += takerToMaker;

 _setOrderStatus(maker);

 _setOrderStatus(taker);

 uint256 fee = _takeFee(taker.id, makerToTaker, taker.user, taker.tokenB);

 _returnLeftover(taker);

 _returnLeftover(maker);

 _send(taker.user, maker.tokenA, makerToTaker - fee);

 _send(maker.user, taker.tokenA, takerToMaker);

 _emitOrderFilled(maker, makerToTaker, takerToMaker, 0);

 _emitOrderFilled(taker, takerToMaker, makerToTaker, fee);

 }

+44 808 2711555 info@hexens.io

DEX-10. INCOMPLETE
IMPLEMENTATION OF LOGIC

SEVERITY: Medium

PATH: DefexaExchange.sol

REMEDIATION: add the implementation of a given logic

STATUS: acknowledged

DESCRIPTION:

The protocol specifies that maker orders should be sorted from best to

worst price, but there are no checks or implementations in place to ensure

this. Thus the authorized caller can, in fact, match orders with any prices in

a centralized manner.

22

+44 808 2711555 info@hexens.io 23

 // @dev

 // match taker order with makers

 // maker orders should be ordered from the best price to worse

 function matchOrders(

 uint256[] memory _makers,

 uint256 _takerId

) public override auth {

 if (orders[_takerId].createdAt == 0) {

 revert OrderNotFound(_takerId);

 }

 if (

 orders[_takerId].status != ORDER_STATUS_NEW &&

 orders[_takerId].status != ORDER_STATUS_PARTIALLY_FILLED

) {

 revert OrderStatusInvalid(orders[_takerId].status);

 }

 for (uint256 i = 0; i < _makers.length; i++) {

 Order storage taker = orders[_takerId];

 Order storage maker = orders[_makers[i]];

 if (maker.createdAt == 0) {

 revert OrderNotFound(_makers[i]);

 }

 if (

 orders[_makers[i]].status != ORDER_STATUS_NEW &&

 orders[_makers[i]].status != ORDER_STATUS_PARTIALLY_FILLED

) {

 revert OrderStatusInvalid(orders[_takerId].status);

 }

 if ((maker.tokenA != taker.tokenB) ||

 (maker.tokenB != taker.tokenA)) {

 revert TokensMismatch();

 }

 // console.log("[M1] TakerAmount: ", taker.amount);

 if (taker.amount == 0) {

 break;

 }

 _fill(maker, taker);

 }

 }

+44 808 2711555 info@hexens.io

DEX-9. MISSING LIMIT ON FEE

SEVERITY: Medium

PATH: DefexaExchange.sol

REMEDIATION: add a maximal fee size, e.g. 10% and consider
checking that the new fee is less than that maximum fee

STATUS: fixed

DESCRIPTION:

There is no check to ensure that the set fee is not greater than 100%. E.g. an

authorized person could set it to 150% and thereby drain money from the

users.

24

 function setTakerFee(uint256 _newFee) external auth {

 takerFee = _newFee;

 emit TakerFeeUpdated(_newFee, block.timestamp);

+44 808 2711555 info@hexens.io

DEX-6. CREATEORDER FUNCTION
PARAMETERS LACK ZERO VALUE
CHECK

SEVERITY: Medium

PATH: DefexaExchange.sol

REMEDIATION: add checks for zero values for _amount and _price
input parameters

STATUS: fixed

DESCRIPTION:

The function createOrder() accepts _amount and _price as input

parameters, but it lacks a check for zero values. This vulnerability could be

exploited by a malicious actor to create a large number of orders, causing

issues for other users in finding and matching corresponding orders or

causing issues in the front end, spamming with orders. Additionally, even

without a check on the _amount parameter, a bad actor could still call the

matchOrders() function.

25

+44 808 2711555 info@hexens.io 26

 function createOrder(

 address _tokenA,

 address _tokenB,

 uint256 _amount,

 uint256 _price,

 bool _isQuote,

 uint8 _orderType

) external live payable override returns (uint256) {

 if (_tokenA == _tokenB) {

 revert TokensMismatch();

 }

 if (_orderType != ORDER_TYPE_GTC) {

 revert OrderTypeNotSupported(_orderType);

 }

 uint256 holdAmount = _amount;

 if (_isQuote) {

 holdAmount = _amount * _price / 1e18;

 }

 if (_tokenA == address(0) && msg.value != holdAmount) {

 revert InvalidOrder();

 }

 uint256 newId = uint256(keccak256(abi.encode(msg.sender, block.timestamp, _amount)));

 orders[newId] = Order({

 id: newId,

 createdAt: block.timestamp,

 user: msg.sender,

 tokenA: _tokenA,

 tokenB: _tokenB,

 amount: _amount,

 initialAmount: holdAmount,

 spentAmount: 0,

 price: _price,

 isQuote: _isQuote,

 orderType: _orderType,

 status: ORDER_STATUS_NEW

 });

+44 808 2711555 info@hexens.io 27

 if (_tokenA != address(0)) {

 if (!IERC20(_tokenA).transferFrom(msg.sender, address(this), holdAmount)) {

 revert TransferFailed();

 }

 }

 emit NewOrder(msg.sender, newId, _amount, _price, _tokenA, _tokenB, block.timestamp, _isQuote, _orderType);

 return newId;

 }

+44 808 2711555 info@hexens.io

DEX-8. BETTER WORKING
COMPARISON LOGIC

SEVERITY: Informational

PATH: DefexaExchange.sol

REMEDIATION: change 1e36 / taker.price > maker.price to 1e36 >
maker.price * taker.price

STATUS: fixed

DESCRIPTION:

In the _fill function, the current price check is 1e36 / taker.price >

maker.price (L126). However, it is recommended to change it to 1e36 >

maker.price * taker.price for better readability and potential rounding

errors.

28

+44 808 2711555 info@hexens.io 29

 function _fill(

 Order storage maker,

 Order storage taker

) internal {

 if (taker.isQuote) {

 if (1e36 / taker.price > maker.price) {

 revert PriceMismatch(maker.price, taker.price);

 }

 }

 (uint256 makerAmount, uint256 makerQuote, uint256 takerAmount, uint256 takerQuote) =

 _getAmountForPrice(maker, taker);

 if (makerQuote > takerAmount) {

 makerQuote = takerAmount;

 }

 if (takerQuote > makerAmount) {

 takerQuote = makerAmount;

 }

 uint256 takerToMaker = makerQuote;

 uint256 makerToTaker = takerQuote;

 if (maker.isQuote) {

 maker.amount -= takerToMaker;

 } else {

 maker.amount -= makerToTaker;

 }

 maker.spentAmount += makerToTaker;

 if (taker.isQuote) {

 taker.amount -= makerToTaker;

 } else {

 taker.amount -= takerToMaker;

 }

 taker.spentAmount += takerToMaker;

 _setOrderStatus(maker);

 _setOrderStatus(taker);

 uint256 fee = _takeFee(taker.id, makerToTaker, taker.user, taker.tokenB);

 _returnLeftover(taker);

 _returnLeftover(maker);

 _send(taker.user, maker.tokenA, makerToTaker - fee);

 _send(maker.user, taker.tokenA, takerToMaker);

 _emitOrderFilled(maker, makerToTaker, takerToMaker, 0);

 _emitOrderFilled(taker, takerToMaker, makerToTaker, fee);

 }

+44 808 2711555 info@hexens.io

DEX-4. FUNCTION PARAMETER
LACKS ZERO ADDRESS CHECK

SEVERITY: Informational

PATH: DefexaExchange.sol, DefexaVault.sol

REMEDIATION: add zero address checks to _feeCollector variable

STATUS: fixed

DESCRIPTION:

In functions initialize() address _feeCollector lacks a zero address check.

In function setFeeCollector() address _feeCollector lacks a zero address

check.

30

+44 808 2711555 info@hexens.io 31

 function initialize(

 address _feeCollector,

 uint256 _takerFee

) public initializer {

 __Ownable_init();

 __WardedLiving_init();

 feeCollector = _feeCollector;

 takerFee = _takerFee;

 }

 [..]

 function setFeeCollector(address _feeCollector) external auth {

 feeCollector = _feeCollector;

 emit FeeCollectorUpdated(feeCollector, block.timestamp);

 }

+44 808 2711555 info@hexens.io 32

DEX-5. REDUNDANT IF STATEMENTS

SEVERITY: Informational

PATH: DefexaExchange.sol

REMEDIATION: remove that if statements

STATUS: fixed

DESCRIPTION:

The functions cancelOrder and _returnLeftover include an if statement

that checks if leftover > 0. However, in cancelOrder this function only

works if the order status is either ORDER_STATUS_NEW or

ORDER_STATUS_PARTIALLY_FILLED. If the order status is one of the

mentioned, it already implies that orders[_orderId].initialAmount -

orders[_orderId].spentAmount, which is leftover is greater than 0.

In _returnLeftover leftover also should be greater than 0.

In the case that leftover is equal to 0, _send function will be called with 0

amount, which also has no impact.

+44 808 2711555 info@hexens.io 33

 function cancelOrder(

 uint256 _orderId

) external live override {

 if (orders[_orderId].status != ORDER_STATUS_NEW &&

 orders[_orderId].status != ORDER_STATUS_PARTIALLY_FILLED) {

 revert OrderStatusInvalid(orders[_orderId].status);

 }

 if (orders[_orderId].user != msg.sender) {

 revert Forbidden();

 }

 orders[_orderId].status = ORDER_STATUS_CANCELLED;

 uint256 leftover = orders[_orderId].initialAmount - orders[_orderId].spentAmount;

 if (leftover > 0) {

 _send(msg.sender, orders[_orderId].tokenA, leftover);

 }

 emit OrderCanceled(msg.sender, _orderId, block.timestamp);

 }

+44 808 2711555 info@hexens.io 34

DEX-11. IMPROVE CODE READABILITY

SEVERITY: Informational

PATH: DefexaExchange.sol

REMEDIATION: see description

STATUS: fixed

DESCRIPTION:

The matchOrders function currently includes two checks for

OrderNotFound and OrderStatusInvalid for both taker and makers. To

improve code readability, these checks can be consolidated into a

separate function f.e called isValidOrder(), or some modifier.

+44 808 2711555 info@hexens.io 35

[..]

 if (orders[_takerId].createdAt == 0) {

 revert OrderNotFound(_takerId);

 }

 if (

 orders[_takerId].status != ORDER_STATUS_NEW &&

 orders[_takerId].status != ORDER_STATUS_PARTIALLY_FILLED

) {

 revert OrderStatusInvalid(orders[_takerId].status);

 }

 for (uint256 i = 0; i < _makers.length; i++) {

 Order storage taker = orders[_takerId];

 Order storage maker = orders[_makers[i]];

 if (maker.createdAt == 0) {

 revert OrderNotFound(_makers[i]);

 }

 if (

 orders[_makers[i]].status != ORDER_STATUS_NEW &&

 orders[_makers[i]].status != ORDER_STATUS_PARTIALLY_FILLED

) {

 revert OrderStatusInvalid(orders[_takerId].status);

 }

[..]

+44 808 2711555 info@hexens.io 36

DEX-1. FUNCTION'S STATE
MUTABILITY

SEVERITY: Informational

PATH: DefexaExchange.sol

REMEDIATION: change view to pure for clean code purposes

STATUS: fixed

DESCRIPTION:

The state mutability of a function can be changed from view to pure.

 function _getAmountForPrice(

 Order memory maker,

 Order memory taker

) internal view returns(

 uint256 makerAmount, uint256 makerQuote, uint256 takerAmount, uint256 takerQuote) {

 takerQuote = taker.amount * maker.price / 1e18;

 makerQuote = maker.amount * 1e18 / maker.price;

 makerAmount = maker.amount;

 takerAmount = taker.amount;

 if (maker.isQuote) {

 makerQuote = maker.amount;

 makerAmount = maker.amount * maker.price / 1e18;

 }

 if (taker.isQuote) {

 takerQuote = taker.amount;

 takerAmount = taker.amount * 1e18 / maker.price;

 }

 }

+44 808 2711555 info@hexens.io 37

DEX-12. REDUNDANT RETURN

SEVERITY: Informational

PATH: DefexaExchange.sol

REMEDIATION: remove return leftover;

STATUS: fixed

DESCRIPTION:

The return leftover; statement in line 265 is redundant since the function

declaration already specifies that the function returns a uint256 with the

name leftover: returns(uint256 leftover).

 function _returnLeftover(Order memory taker) internal returns(uint256 leftover) {

 if (taker.isQuote && taker.amount == 0) {

 leftover = taker.initialAmount - taker.spentAmount;

 if (leftover > 0) {

 _send(taker.user, taker.tokenA, leftover);

 emit LeftoverReturned(taker.user, taker.id, taker.tokenA, leftover, block.timestamp);

 }

 }

 return leftover;

 }

38

